
ABSTRACTING THE HETEREOGENEITIES OF COMPUTATIONAL

RESOURCES IN THE SAM-GRID TO ENABLE EXECUTION

OF HIGH ENERGY PHYSICS APPLICATIONS

The members of the Committee approve the master’s
thesis of Sankalp Jain

Supervising Professor Name
David Levine ______________________________________

Jaehoon Yu ______________________________________

Leonidas Fegaras ______________________________________

Copyright © by Sankalp Jain 2004

All Rights Reserved

ABSTRACTING THE HETEREOGENEITIES OF COMPUTATIONAL

RESOURCES IN THE SAM-GRID TO ENABLE EXECUTION

OF HIGH ENERGY PHYSICS APPLICATIONS

by

SANKALP JAIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2004

 iv

ACKNOWLEDGEMENTS

I would like thank my supervising professor, Mr. David Levine for his constant

encouragement and guidance throughout my research.

I am grateful to Dr. Jaehoon Yu, Department of Physics, UT Arlington for his

support and encouragement throughout my research and for managing the UTA-FNAL

exchange program.

I would like to thank Dr. Leonidas Fegaras, Department of Computer Science

and Engineering, UT Arlington for serving on my committee.

I would like to thank the core SAM team at Fermilab, specifically Andrew

Baranovski, for their help during my work

Most importantly, I would like to express my sincere gratitude to the SAM-Grid

team at Fermilab, specifically Igor Terekhov and Gabriele Garzoglio. Without their

support and guidance I would not have been able to complete the work in this thesis. I

would also like to thank Aditya Nishandar for his help during my work.

I would like to thank Abhishek Rana, Siddharth Patil, Hannu Koutaniemi, Parag

Mhashilkar and Vijay Murthi. Although I never worked with them, their work prior to

my arrival at Fermilab proved to be invaluable for the work in this thesis.

I am thankful to my parents and sister for their constant support and

encouragement throughout my academic career.

November 10, 2004

 v

ABSTRACT

ABSTRACTING THE HETEREOGENEITIES OF COMPUTATIONAL

RESOURCES IN THE SAM-GRID TO ENABLE EXECUTION

OF HIGH ENERGY PHYSICS APPLICATIONS

Publication No. ______

Sankalp Jain, M.S.

The University of Texas at Arlington, 2004

Supervising Professor: David Levine

The computing infrastructure of modern High Energy Physics collaborations

consists of resources that are spread across the globe and that are greatly different from

one another – different batch systems, file systems, cluster configurations, etc. A Grid

that unites all these resources must make these differences transparent to the user and

the application being run. The work in this thesis has been done as part of the SAM-

Grid project at Fermi National Accelerator Laboratory, Batavia, IL and has resulted in a

system that abstracts the user application from the heterogeneities of a Grid providing

user applications with a uniform working environment and one that is easily deployable

and maintainable. We have used Grid middleware tools such as the Globus toolkit and

 vi

other tools developed at Fermilab to create a uniform working environment at the

worker node where the application is actually executed. This system has been deployed

on 12 sites in 6 countries and is currently being used for running High Energy Physics

applications for the D0 and CDF experiments based at Fermilab.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iv

ABSTRACT .. v

LIST OF ILLUSTRATIONS.. x

Chapter

 1. INTRODUCTION………………... . 1

 1.1 What is Grid Computing? ………………... . 1

 1.2 Grid Computing and other distributed computing paradigms…………. . 2

 1.3 High Energy Physics at Fermilab……………….................................... . 4

 1.4 High Energy Physics and Grid Computing ……………….. 4

 1.5 Goal of the Thesis……………….. . 6

 2. RELATED WORK……………….. 7

 2.1 Globus……………….. 7

 2.1.1 GSI (Grid Security Infrastructure) ……………….......................... . 7

 2.1.2 GRAM (Globus Resource Allocation Manager) ……………….... . 8

 2.1.3 GridFTP………………... . 9

 2.2 Condor-G………………... . 10

 2.3 SAM……………….. 12

 2.4 SAM-Grid Project……………….. 16

 viii

 3. SAM-GRID ARCHITECTURE……………….. . 18

 3.1 The Grid Layer in SAM-Grid……………….. . 18

 3.1.1 The Grid Layer Design……………….. . 21

 3.2 The Fabric Layer and the Grid-to-Fabric interface in SAM-Grid........... . 24

 3.2.1 The Need for Grid-to-Fabric Interface……………….. 25

 3.2.2 Grid-to-Fabric Interface Design……………….. 28

 3.2.2.1 JIM Sandboxing……………….. .. . 29

 3.2.2.2 SAM-Grid Job Managers……………….. 31

 3.3 SAM-Grid Complete Architecture……………….. 35

 4. BATCH SYSTEM ABSTRACTION AND IDEALIZATION..................... . 38

 4.1 SAM Batch Adapters………………... . 39

 4.2 Batch System Idealizers……………….. .. . 42

 4.2.1 Need for Batch System Idealizers……………….. 43

 4.2.2 Implementation of BS Idealizers……………….. 46

 4.2.2.1 Batch System Idealizer Interface………………................... . 48

 4.2.2.2 Batch System Idealizer for Condor……………….. 52

 4.2.2.3 Batch System Idealizer for PBS……………….. 53

 4.2.2.4 Batch System Idealizer for BQS……………….. 54

 4.2.2.5 Batch System Idealizer for FBSNG……………….. 55

 4.3 Bootstrapping the Execution of User applications……………….......... . 55

 4.4 Intra-Cluster transfers in SAM……………….. . 59

 ix

 5. CONCLUSIONS……………….. . 62

 5.1 Conclusions……………….. 62

 5.2 Current utilization of SAM-Grid system………………......................... . 63

 5.2 Future Work ……………….. 64

REFERENCES………………... . 66

BIOGRAPHICAL INFORMATION……………….. 70

 x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Overview of SAM... 12

2.2 SAM Station Components.. 14

3.1 Grid Layer Control Flow for a single job ... 22

3.2 Simple Job and Resource ClassAds.. 23

3.3 Grid-to-Fabric Interface Design.. 29

3.4 SAM-Grid Job Managers flow control ... 33

3.5 SAM-Grid Architecture.. 36

4.1 Part of a typical SAM Batch Adapter Configuration...................................... 40

4.2 Batch Idealizer Interface... 48

4.3 SAM Batch Adapter Configuration.. 49

4.4 Job submission through batch idealizer .. 50

4.5 Job lookup through batch idealizer ... 51

4.6 Job lookup for multiple local jobs belonging to a single grid job 51

4.7 Output of lookup when the job has finished... 52

4.8 Bootstrapping at a worker node.. 57

4.9 Usage information in XML database.. 58

5.1 Infrastructure efficiency during 1 week test period.. 63

5.2 End-to-end efficiency at 3 sites over a 6 week period.................................... 64

 1

CHAPTER 1

INTRODUCTION

In recent years Grid Computing has emerged as a popular and useful paradigm

for solving large computational and data intensive problems. The evolution of Grid

Computing has been driven by the increasing complexities of the problems that the

scientists in today’s age are trying to solve. Problems such as molecular drug design or

simulation of High Energy Physics particle collisions require an unprecedented amount

of computational and storage resources.

1.1 What is Grid Computing?

Grid Computing is a distributed computing paradigm which makes it possible

for scientific collaborations and other institutions to share their resources at an

unprecedented scale and for geographically distributed groups to work together in ways

that were previously impossible [FOSTERPHYSICSTODAY]. A Grid is a system that

is built on the Internet and provides a scalable, secure, & high-performance mechanism

to coordinate and share resources across dynamic and geographically dispersed

organizations. This sharing involves direct access to computers, software, data, and

other resources. A Grid can seamlessly integrate the resources (often geographically

distributed) of organizations or scientific collaborations, allowing for better resource

 2

management by providing transparent access to the resources of the collaboration to all

members.

1.2 Grid Computing and other distributed computing paradigms

The problem that differentiates Grid Computing from other distributed

computing paradigms such as Enterprise distributed computing technologies is the

distributed ownership of the resources and the unique resource sharing requirements. In

a Grid environment the resources are under different ownership or administration. The

resource consumer (users of the resource) may be from an organization other than the

resource provider (owner of the resource). Hence the sharing of resources is highly

controlled with resource providers and consumers defining clearly just what is shared,

who is allowed to share, and the condition under which the sharing occurs

[ANATOMY]. A group of individuals or institutions defined by such sharing rules is

termed a Virtual Organization (VO). In other words a VO is a collection of individuals

and institutions that pool their resources together to achieve a common goal.

[ANATOMY] lists the following as an example of a VO: an application service

provider, a storage service provider, a cycle provider, and consultants engaged by a car

manufacturer to perform scenario evaluation during planning for a new factory. Another

example of a VO is a modern High Energy Physics collaboration in which

geographically distributed institutions pool their resources together to solve common

problems.

 3

[ANATOMY] identifies the following as the main requirements and concerns of

the Grid domain that differentiates it from other distributed computing paradigms:

1. Highly flexible sharing relationships for precise control over how resources are

used. The sharing relationships vary from client-server to peer-to-peer.

2. Fine-grained and multi-stakeholder access control, delegation and application of

local and global security policies. The access to the resources needs to be

governed by the policies set by the owners (local policies) i.e. there cannot be a

single access control policy for all the resources of a VO.

3. The resources themselves vary from programs, files, and data to computers,

sensors, and networks.

4. Diverse usage modes ranging from single user to multi-users and from

performance sensitive to cost sensitive hence embracing the issues of quality of

service, scheduling, co-allocation, and accounting.

These requirements are not solved by the distributed computing technologies in use

today. For example, current internet technologies address communication and

information exchange among computers but do not provide integrated approaches to

coordinated use of resources at multiple sites [ANATOMY]. Enterprise distributed

computing technologies such as CORBA and Enterprise JAVA enable resource sharing

within a single organization [ANATOMY]. They either do not accommodate the range

of resource types or do not provide the flexibility and control on sharing relationships

needed to establish VOs.

 4

1.3 High Energy Physics at Fermilab

Fermi National Accelerator Laboratory (Fermilab) [FNAL] located at Batavia,

IL is home to the world’s highest energy particle accelerator, the Tevatron. The

Tevatron accelerates protons and anti-protons close to the speed of light and then makes

them collide head-on [CDF-1]. These collisions are recorded by detectors inside the

Tevatron and are converted it to digital data which is then stored to permanent storage.

The physicists study the products of such collisions and try to reconstruct what

happened in the collision and ultimately try to figure out how matter is put together and

what forces nature uses to create the world around us [CDF-1].

Currently there are two main experiments based at Fermilab that are making use

of the Tevatron. The DZERO experiment is a collaboration of over 500 scientists and

engineers from 60 institutions in 15 countries [D0-1]. The other experiment, Collider

Detector at Fermilab (CDF) is also a collaboration of physicists and institutions from

around the world [CDF-1]. These experiments are in data taking phase referred to as

RUN-II and each experiment produces data in the order of TB/day. The previous phase

called RUN-I lasted through the beginning of 1996 and resulted in important discoveries

by both the experiments that have helped scientists to better understand the nature of

matter.

1.4 High Energy Physics and Grid Computing

As described in the last section the High Energy Physics (HEP) experiments

generate data in the order of TB/day. This data is stored on a Mass Storage System

 5

based on tape archives called Enstore developed at Fermilab [ENSTORE]. The Enstore

provides a generic interface (an API) so experimenters can use Mass Storage System as

easily as if they were native file systems. Analyzing the data stored in the Mass Storage

System requires a large amount of computational resources. The computational

resources of the experiments are distributed across various institutions around the

world. Thus there is a need to provide distributed access to the data and also to the

resources of the experiments so that the experimenters can study the data irrespective of

their geographic location.

The HEP experiments resemble the Virtual Organization concept described in

section 1.2. In particular the resources of a HEP experiment are owned by different

institutions that are a part of the experiment and there is a need to allow access to these

resources to any individual who is a part of the experiment. Thus Grid Computing

presents itself as an ideal solution for the computational requirements of HEP

experiments such as DZERO and CDF. To provide distributed access to the data in the

Mass Storage System, a system called SAM (Sequential Access to Data via Metadata)

has been developed internally at Fermilab [SAM-1]. The SAM system is described in

detail in the next chapter. The SAM-Grid project at Fermilab is focused towards

providing Grid solution to the HEP experiments based at Fermilab. The goal of the

project is to create a Grid infrastructure that will enable scientists to access the

resources belonging to the experiment as if they were local resources. The SAM-Grid

project is funded by the Particle Physics Data Grid [PPDG].

 6

1.5 Goal of the Thesis

The work in this thesis has been done as part of the SAM-Grid project at

Fermilab and it has been supported by the Department of Physics, the Department of

Computer Science and Engineering at the University of Texas at Arlington, Arlington,

TX and the Fermi National Accelerator Laboratory, Batavia, IL.

The goal of the thesis is to develop new methods and systems that abstract the

differences that are inherent in the computational resources of a Virtual Organization

and at the same time eliminating the fallacies in such resources which may make their

integration into a grid difficult. This is done providing a level of abstraction between the

resource managers of the computational resources and the grid middleware.

The rest of the thesis is organized as follows: Chapter 2 provides an overview of

the various technologies used in SAM-Grid. Chapter 3 discusses in detail the

architecture of SAM-Grid. Chapter 4 describes the methods and system developed to

allow integration of diverse resources into SAM-Grid. Finally chapter 5 lists the

Conclusions that can be drawn from this thesis.

 7

CHAPTER 2

RELATED WORK

The implementation of the SAM-Grid system makes use of many Grid

computing technologies. This chapter provides an overview of the Grid technologies

used in SAM-Grid. It also presents an overview of SAM, the data handling system that

SAM-Grid depends on.

2.1 Globus

The Globus Alliance is developing fundamental technologies needed to build

computational grids [GLOBUS-PAGE]. The Globus Toolkit is an open source software

toolkit used for building grids. It is being developed by the Globus Alliance and many

others all over the world [GLOBUS-TOOLKIT]. The Globus Toolkit includes software

services and libraries for resource monitoring, discovery, and management plus security

and file management. The rest of this section describes the tools in Globus Toolkit used

in SAM-Grid.

2.1.1 GSI (Grid Security Infrastructure)

The Grid Security Infrastructure is a part of the Globus Toolkit that provides

fundamental security services that are needed to build grids [GSI-1]. The GSI

 8

implementation is based on public key infrastructure, X.509 certificates and SSL/TSL

protocol.

X.509 certificates alone are not good enough to meet the security requirements

in a grid environment for reasons described further. It is often the case that a grid user

needs to delegate a subset of their privileges to another entity on relatively short notice

for a brief amount of time [GSI-1]. X.509 certificates do not support this form of

delegation. Also the private keys associated with X.509 certificates are often protected

by pass phrase or pins. This prohibits repeated authentication without user intervention.

This concept is known as single sign-on. The GSI extends X.509 certificates and allows

for dynamic delegation of credentials using the SSL protocol and single sign-on by

creating a new set of credentials that do not require any pass phrases or pins from the

user and are valid for a small amount of time.

2.1.2 GRAM (Globus Resource Allocation Manager)

Globus Resource Allocation Manager is an interface by which remote system

resources can be requested and used [GRAM-URL]. It is a set of components that are

bundled as part of the Globus Toolkit. GRAM is one of the most widely used interfaces

for remote job submission and resource management in the grid community.

Under GRAM there is a process called the gatekeeper running on the machine

hosting the remote resource. This machine is called the gateway or the head node at a

remote site. The request for access to a resource is composed in Resource Specification

Language (RSL) which the gatekeeper understands. When the gatekeeper receives such

 9

a request it uses GSI to authenticate and authorize the user. For this the gatekeeper

refers to a file called the grid-map file which is a mapping of the users’ GSI credentials

to a local account on the host machine. Thus the users’ privileges at the remote site are

limited to that account’s privileges at the site. This feature provides the flexibility of

having the local security policies take precedence over global policies. Thus the access

to a resource is totally governed by the administrators of various resources, an important

requirement in grid environment. Usually there is one local account for each Virtual

Organization that the resource is participating in.

Once authorized the gatekeeper passes the request to a job manager which

carries out the requested operation. The GRAM protocol has also the provision to stage

files from the client machine using Global Access to Secondary Storage [GASS]. In the

most common scenario the gatekeeper is running on the submit node (the node from

where jobs can be submitted to the batch system) or the head node of a cluster and the

job manager simply submits job to a local batch system.

2.1.3 GridFTP

GridFTP is a high-performance, secure, reliable data transfer protocol optimized

for high-bandwidth wide-area networks [GRIDFTP-URL]. It is based on the File

Transfer Protocol (FTP), the highly-popular file transfer mechanism widely deployed

on the Internet.

 [GRIDFTP-DOC] lists the following GridFTP extensions to FTP

 10

• GSI security on data and control channels: Robust and flexible

authentication and integrity features are critical when transferring or

accessing files.

• Multiple data channels for parallel transfers: On wide-area links, using

multiple TCP streams can improve aggregate bandwidth over using a

single TCP stream.

• Third party (direct server-to-server) transfers: In order to manage large

data sets for large distributed communities, it is necessary to provide

third-party control of transfers between storage servers.

• Striped data transfer: Partitioning data across multiple servers can

further improve aggregate bandwidth.

GridFTP has become very popular in grid community because of its support for GSI

and the scalability of FTP.

2.2 Condor-G

Condor is a workload management system for high throughput computing.

Condor can be run in an idle cycle hunting mode where idle cycles from computers that

are currently idle can be harnessed to do some useful processing. Like other full

featured batch systems, Condor provides a job queuing mechanism, scheduling policy,

priority scheme, resource monitoring, and resource management [CONDOR-URL].

Amongst the novel feature of Condor are the Condor ClassAds and Check Pointing. The

ClassAd mechanism in Condor provides a very flexible and expressive way of matching

 11

resources requirements (jobs) with resource offers (machines) [CLASSADS]. A

ClassAd for a job contains the requirements of the job such as required operating

system, memory needed etc. A resource ClassAd contains information about the

resource capability. The scheduling a job is done by matching the job ClassAd against

those of the resource and finding a resource capable of satisfying the job requirements.

The Condor checkpointing mechanism allows the state of a job running at a particular

machine to be saved and the job can be continued at another machine. This allows for

migration of jobs form one host to another without loss of computational time. This

allows Condor to be run in an idle cycle hunting mode in which jobs are scheduled as

resources become available (when the resource is not claimed by the owner) and they

can be evicted once the owner reclaims the resource. The Condor system is the product

of Condor Project at the University of Wisconsin at Madison.

Condor-G system leverages software from Condor and Globus to allow users to

harness multi-domain resources as if they all belong to one personal domain

[CONDORG]. Condor-G combines the resource brokering capability of the Condor

system with GSI and GRAM from the Globus Toolkit resulting in a grid like system. In

Condor-G the resource brokering is provided by the Condor Match Making Service in

which the ClassAds from the job are matched against the ClassAds from the remote

resources to find a best match for the job. Once a resource has been identified Condor-G

then submits the job to the resource using GRAM and GSI from the globus toolkit. The

details about the functioning of Condor-G within the SAM-Grid system are described in

detail in the next chapter.

 12

2.3 SAM (Sequential Access to data via Metadata)

SAM is a data handling system developed at Fermilab to handle high volumes

of data (in the order of TB/day). SAM stands for Sequential Access to data via

Metadata where sequential refers to sequential physics events stored within files which

in-turn are stored sequentially on tapes within a Mass Storage System (MSS) at

Fermilab [SAM-1]. It was originally developed for the DZERO experiment based at

Fermilab. SAM has distributed network architecture as shown in figure 2.1 which is

taken from [SAM-1].

Figure 2.1: Overview of SAM

The system can be divided into a set of shared or global components and local

or site specific components. The different components of the system communicate with

Name
Server

Database
Server

Global

Resource
Manager(s)

Log

Server

Station 1
Servers

Station 2
Servers

Station 3
Servers

Station n
Servers

Mass

 Storage
System(s)

Shared
Globally

Local

Control Flow
Data Flow

 13

each other using CORBA [SAM-1]. In SAM the catalogs of metadata, locations

(replica catalogs), data transformations, SAM configuration and policy, detector

configurations and other parameters are maintained in a central Oracle database at

Fermilab [SAM-2]. There are more than one database servers servicing requests to this

database. In current infrastructure there is a database server to service the requests

coming from SAM stations, a server for interactive user requests, a server for requests

coming as a result of grid activity, and a server for Web queries. This paradigm

provides scalability and as more local components are added to the system, if need be

the number of database servers can be increased proportionally. The actual physics data

coming out of the detectors and the simulated & reconstructed data is stored in the MSS

like the Enstore at Fermilab. The different remote processing centers can access the data

in Enstore using the Metadata in the central repository.

The following is the list of globally shared services in SAM as shown in Figure

2.1.

• A CORBA naming service that allows all other components in the

system to find each other by name

• The database servers providing access to the Metadata database

• One or more global resource managers deployed to control and more

effectively manage resources like Automated Tape Libraries.

• A log server that is used to gather logging information from the entire

system.

 14

These global services are accessible to the local components at various sites in the

system. All the network communication between different components uses well

defined CORBA interfaces.

In SAM each local processing site or center is called a SAM Station. Figure 2.2

taken from [SAM-1] shows the internals of a SAM Station. Each station has a logical

disk called Station Cache associated with it. The process responsible for managing this

cache is called the Station Master.

Figure 2.2: SAM Station Components

Different SAM stations can communicate with each other using Station Names

and the CORBA naming service. Thus data in one station’s cache can be replicated in

Project
Managers

File
Stager(s)

Station &
Cache

Manager

File
Storage
Server

Producers/-----------------/Consumers

Cache Disk
Temp Disk

eworkers

File Storage
Clients

Data Flow

Control

MSS or
Other

Station

 MSS or
Other

Station

 15

another stations cache on demand, with the central replica catalog maintaining the valid

list of locations. Thus if a particular file is present in some station’s cache then it can be

directly copied to the requesting station’s cache rather than getting it from MSS which

has a longer delay associated with it.

The part of the station that is responsible for moving data from one Station to

another is called the File Stager. SAM supports a wide variety of protocols for

transferring files – GridFTP, rcp, kerberized rcp, ftp, encp (for copying files from

Enstore) etc. To move a file from one station to another the receiving station’s master

instructs its stager, which then invokes a process called Eworker for each file transfer.

The Eworkers perform the actual copy operations. The stager keeps track of each file

transfer and retries each failed transfer a configurable number of times. Storing of files

to the MSS is the responsibility of the File Storage Server. For storing a file first its

metadata is declared or stored in the central repository and then the File Storage Server

performs the actual file transfer to the MSS.

In order to access files stored in the SAM system a user must first define a

Dataset, which is a set of files matching certain criterion. There is a command line

interface, a web interface, and a Python API available to define datasets of files

available in SAM. In order to fetch a dataset the user must run a SAM Project against

the dataset. Project is the name given to the process of getting files from the SAM

system. When a SAM project is submitted to the station master it launches a child

process called the Project Manager for each project, which is responsible for getting the

files in the dataset from, either MSS or other stations, to the station’s cache. User

 16

applications consume the files by a process called the Consumer which registers itself

with the station master. The files are pulled by the consumer in the sense that when a

consumer asks for the next file, if it is available in the local cache the Project Manager

returns its location to the consumer which can then copy it to user’s area. If a file is not

available the consumer blocks until it is signaled by the Project Manager. There are

command line interfaces and also a python API available for running and monitoring

SAM Projects. Using these commands the users can determine the status of a project

which includes the number of files acquired in station cache, the number of files

consumed by the user application, the number of files in the dataset against which the

project is being run etc.

As the stations are governed by local security policies, not all stations can

directly communicate with each other (for example due to firewall issues). Also only a

certain stations have direct access to the MSS. To solve this problem SAM supports the

concept of file routing. If a file lies in a part of the system that is not directly accessible

to a station then the station’s access to the file is defined via route through one or more

SAM stations that provide caching and forwarding services [SAM-2]. There is an

accessibility matrix for each compute and storage element managed or accessed by a

station.

2.4 SAM-Grid Project

The SAM-Grid project at Fermilab is an effort to build a grid that uses SAM as

its data handling system to enable fully distributed computing for the DZERO and the

 17

CDF experiments. SAM is a robust and scalable data handling system but it lacks grid

level job submission and management features. This has been accomplished by the

development of Job and Information Management (JIM) system. JIM has been

developed using the grid technologies described in this chapter – Condor-G and Globus.

The SAM-Grid project is funded by PPDG and GridPP and has been in use for the last

year to run Monte Carlo simulations for the DZERO experiment and is in the process of

being adapted for the CDF experiment.

 18

CHAPTER 3

SAM-GRID ARCHITECTURE

The SAM-Grid architecture can be organized into two layers: the Grid Layer

which encompasses the services that are global in nature, and the Fabric Layer which

includes services whose scope are restricted to the scope of a or computational resource

[CHEP04]. Fabric is the collection of all the physical computational and storage

resources that are part of the grid. The grid layer is on top of the Fabric layer and is

responsible for providing the connectivity amongst the resources of the grid. The two

layers are responsible for providing different set of services that together complement

each other to provide a working grid system. This chapter describes the two layers, the

services they offer and the interface between the two layers.

3.1 The Grid Layer in SAM-Grid

The grid layer in the SAM-Grid architecture provides the connectivity amongst

the distributed resources of a Virtual Organization. The word connectivity here implies

a grid level job management that the grid layer provides to enable job submissions to

remote sites (computational resources). These computational resources are cluster of

computers that are managed by a local batch system at each site. The grid level job

management is different from local job management which is provided by the local

 19

batch system managing the resource. The rest of this section discusses the issues

involved in the grid level job management and its implementation in the SAM-Grid

system.

When a user submits a job to run on a grid, he/she specifies the executable to

run, its input if any and the requirements of the resource where the job can execute i.e.

the job requirements. Once a job is submitted it is the responsibility of the grid layer to

find a resource on the grid that matches the job requirements. Once such a resource has

been identified the grid layer must start the execution there or if no such resource exists

return an error to the user. In order to provide this grid level job management the grid

layer must provide the following services.

• Resource Discovery: A grid has a number of computational resources connected to

it. The grid layer must know about all the resources that are a part of the grid and

their capabilities such as the amount of physical memory available, the processing

capabilities or the size of the resource etc.

• Resource Matching / Brokering: The grid layer has to match the user supplied job

requirements with the requirements of all the resources in order to find a resource

that is best capable of running the user executable.

• Job Submission: Once a resource capable of running a job has been identified, the

grid layer needs to submit the job to that resource. This involves authenticating the

user, staging in the user executable to the remote site along with its input if any and

staging out the output back to user machine.

 20

• Job Monitoring: The grid layer needs to keep track of the progress of a job,

determine when it has finished, and report the current status of active jobs. Also it

must also provide a way for the user to terminate or kill a grid job.

The grid layer needs to provide the services described above in the context of a Virtual

Organization. For example, if the user belongs to a certain Virtual Organization then the

grid layer must deal with only the resources that belong to that Virtual Organization.

The Condor-G system described in the last chapter provides the services

described above. The SAM-Grid architecture has adopted the Condor-G system as the

core of its grid Layer. However the SAM-Grid architecture depends on SAM rather than

Condor-G, to provide the data handling needed by the system such as the staging-in of

the user executable and its input, staging out of the output etc. This is because the

applications being run on SAM-Grid are all dependent on SAM for getting their input

and storing their output. The application executables themselves are very large in size

for example the size of one release of the DZERO Monte-Carlo application is about ½

gigabytes. So it makes sense to use the rich caching features of SAM at the remote site

rather than transferring the executable to the execution site, every time a job is

submitted there. The Condor-G stage-in is used only for transferring some small user

files such as user specific configuration files. Also the Condor-G stage-out is used for

carrying the standard output and error streams & other log files produced by the

execution of a job back to the user machine.

 21

As shown in figure 3.5, the grid layer in SAM-Grid consists of Condor-G

system, the global data handling services of SAM and a Web server to enable

monitoring via the World Wide Web.

3.1.1 The Grid Layer Design

The grid layer in SAM-Grid has a 3-Tiers architecture in which distinction is

made between the submission site where the jobs are submitted and scheduled, the

broker site where the resource brokering is done, and the execution site where

computational resources are hosted as illustrated in figure 3.1. These three sites are

conceptual entities and they may either reside on the same machine or on different

machines, the latter being the most common case. There can be any number of each site

in the system i.e. multiple submission sites, multiple execution sites and/or multiple

brokering sites. The current infrastructure has just one brokering site, 7 submission, and

12 execution sites. This architecture has proved to be very flexible, scalable, and robust.

Figure 3.1 illustrates the control flow in the grid layer resulting from a single job

submission. For simplicity the global services of SAM are not shown in the figure.

The resource discovery service is provided using the Condor ClassAd

mechanism [CLASSADS]. At each execution site a process called Condor Advertise

periodically sends a ClassAd to the resource broker. This ClassAd contains information

about the execution site like the URL of the gatekeeper, the amount of physical memory

available etc. At the resource broker a process called Condor Collector collects or

 22

receives the ClassAds from all the execution sites. This enables the grid layer to gather

information about all the execution sites.

Figure 3.1: Grid Layer Control Flow for a single job

At the submission site where the jobs are submitted a scheduler process

provides the queue management and scheduling services. The scheduler periodically

sends ClassAds of the jobs that are in its queue and have not yet been matched with a

resource. The job ClassAds contains information about the requirement of a job such as

the amount of physical memory needed by a job, amount of computational time needed

Resource Broker

Condor
Negotiator

Condor
Collector

Condor MMS

Condor-G Scheduler

Job ClassAd

Job Queue

Matched
Resource

Grid Manager

Spawns

Submission Site

Execution Site

Gatekeeper Condor
Advertise

GRAM

Fabric Layer

Resource ClassAd

Job Manager

Grid Client

Web Server

Output

Web Browser

Condor JDL

1

2
4

3

5

6

7

8

Control Flow

Sequence

9

 23

by the job, operating system needed to run the job etc. These job ClassAds are also

collected by the Condor Collector process at the broker.

The resource brokering service is provided by the broker using the Condor

Match Making Service [CONDOR-MMS]. In the Match Making process the attribute

specified in the job’s ClassAd are parsed and match with corresponding attributes in the

ClassAds of resources. A resource which can satisfy all the requirements of the job is

then selected as a match to run the job. A process called Condor Negotiator, also

running at the resource broker performs this Match Making. Figure 3.2 shows examples

of simple Job and Resource class ads. The job requirements in the job ClassAd says that

the job requires a resource with “ INTEL” architecture with an operating system of

“LINUX” and has disk greater than “6000”.

Figure 3.2: Simple Job and Resource ClassAds

 24

Once matched, the negotiator sends the information about the resource (the

execution site) to the scheduler at the submission site where the job was submitted. The

scheduler then spawns a process called grid manager for the job which remains alive

through out the life of the job. The grid manager then submits the job request to the

gatekeeper running at the execution site using the GRAM protocol. The gatekeeper in

turn launches a Globus job manager at the head node of the execution site. The grid

manager keeps track of the job until it has finished, by periodically polling the job

manager at the execution site. After the job finishes at the execution site, the standard

output and input stream and other log files produced by it are transferred back to the

submission site and are stored on a local disk there. These files can be accessed through

the Web, if the client does not have access to the machine hosting the submission site.

The global data handling services of SAM are not used in the grid level job

management but are used in the layer below i.e. the Fabric layer.

3.2 The Fabric Layer and the Grid-to-Fabric interface in SAM-Grid

Fabric is a collection of all the physical computational and storage resources

that are a part of the grid infrastructure [FABRIC-1]. The computational resources are

mostly clusters of computers that are managed by a local batch system. As described in

the last section the grid layer provides a grid level job management, which enables the

invocation of a job manager through the gatekeeper on the head node of the execution

site. But in order to make actual use of the computational resources the job manager

needs to submit local jobs to the batch system and perform some other operations at the

 25

head node. In SAM-Grid architecture the gap between the grid layer and the Fabric is

bridged by a Grid-to-Fabric Interface that provides the grid layer with a set of services

to enable local job submission and monitoring. The information in the rest of this

section has been derived form [FABRIC-1].

3.2.1 The Need for Grid-to-Fabric Interface

A typical Virtual Organization has a lot of computational resources that are

managed by different batch systems. There are a plethora of batch systems and batch

system configurations in common use that are very different from one another. They

differ in the way the jobs are submitted to them, standard output/error streams are

specified, jobs are monitored, the input files are staged etc. In order for a grid to

incorporate all the resources of a Virtual Organization, the differences between the

various batch systems must be abstracted from the grid layer. The way this abstraction

is provided in the Condor-G system is by having a separate job manager for each batch

system and installing the appropriate job manager at each execution site. To incorporate

a new batch system a new job manager needs to be written for it. The job managers that

come bundled with the Condor-G system are very simplistic in the sense that they only

implement interfaces to submit, kill and poll local jobs. These simplistic job managers

have been found inadequate for SAM-Grid requirements as discussed below.

The applications being run on the SAM-Grid infrastructure are closely

integrated with the data handling system SAM. Thus job submission to the batch system

(even an interactive job submission) is done through an interface that allows for pre-

 26

submission steps like triggering a SAM project at the head node (gateway node)

[FABRIC-2]. There is a need for more sophisticated job managers that can perform

some application specific operations at the head node. In addition to this, to facilitate

the execution of these applications there is a need to provide an environment at the

worker nodes (where the local jobs will eventually run) in which the applications can

talk with the Metadata repository, the SAM station at the head node and perform other

SAM related operations. In principle this can be done by having the necessary APIs

available at the worker nodes using a shared files system. But this imposes the

requirement that every execution site needs to have a shared file system which may not

always be the case.

A typical grid job results in a large number of jobs being submitted to the local

batch system. In other words a typical grid job will map to a number of batch system

jobs or local jobs. This number can vary from hundreds at most of the sites to thousands

at some sites. The number of local jobs to be submitted is a characteristic of the

execution site where the grid job is scheduled. This number depends on the processing

capabilities of the cluster which includes the size of the cluster, priority at the cluster

etc. This number cannot be determined until the job is scheduled at an execution site

and therefore cannot be specified from client side. The job managers should be able to

determine the number of local jobs to create for a grid job by either reading the site

configuration or by other means which needs knowledge of the applications being run.

The management of job files is another aspect not dealt by the grid technologies

in use today. Job files are created at the head node by the execution of a local job. These

 27

files include, the standard output/error files of the local job, any log files produced by

the local job, any input file that the local job will use etc. In a grid environment it is

necessary to ensure that the job files produced by two grid jobs do not interfere with

each other to ensure mutual isolation between grid jobs. The job files created at the head

node need to be shipped back to the client machine to enable the user to determine the

outcome and debug problems. So there is a need to track all the job files created by a

grid job. Also once a grid job finishes it is necessary to ensure proper clean up to

prevent the disk space from filling up.

When batch systems are used in conjunction with a grid, some problems are

exposed which may be acceptable in an interactive mode but not in the grid mode. For

example batch system commands often suffer from transient failures either due to heavy

load on batch system servers or transient network problems. This might be acceptable to

an interactive user who can simply reissue the command after a few minutes and

continue working, in a grid scenario it will cause the job to fail needlessly. This issue is

discussed in detail in the next chapter. The grid middleware should be able to protect

itself from such failures as much as possible.

Also the monitoring provided by the standard grid tools is limited to the status

of the grid job i.e. if the grid job is active, finished, failed etc. To give the users better

indication of the progress of a grid job, we need to provide information about the

progress of the local jobs. This includes information about number of local jobs

submitted, jobs running, jobs queued, the output files produced by a local job etc.

 28

The grid computing technologies like Condor-G and Globus do not address the

local job management requirements described above. These requirements can be met by

rewriting the existing job managers that come bundled with Condor-G. However it will

make them extremely complex and difficult to deploy. By providing a layer of

abstraction above the local batch system, sophisticated job managers with knowledge

about the applications being run can be developed easily. This eases the deployment of

the grid middleware considerably. In SAM-Grid architecture this is done by providing a

set of services at the boundary between the grid layer and the fabric layer. These

services together constitute the Grid-to-Fabric interface.

3.2.2 Grid-to-Fabric Interface Design

Figure 3.3 illustrates the design of the Grid-to-Fabric interface in SAM-Grid

architecture. The grid layer interfaces with the SAM-Grid job managers. SAM Batch

Adapters and Batch system idealizers completely abstract the underlying batch system

from the job managers. JIM Sandboxing provides a job file management service to the

job managers. The XML based monitoring service lets the job manager collect more

information about the progress of a job. In the rest of this section an overview of SAM-

Grid job managers and Jim Sandboxing is provided. SAM Batch Adapters and Batch

System Idealizers are discussed in detail in the next chapter.

 29

Figure 3.3: Grid-to-Fabric Interface Design

3.2.2.1 JIM Sandboxing

JIM Sandboxing provides a local file management service to the SAM-Grid job

managers. It is a tool used to initialize the relevant input files for a job and return a

collection of all the output and diagnostic files produced by a grid job. Normally when a

job is submitted interactively to a batch system, the standard output and error files are

deposited in either a user specified location or a default location such as the home area

of the user. In a grid environment the user cannot provide this information as it is

transparent to the user. This can be set to some fixed location configured at each site or

some other default location. However it will result in multiple grid jobs that are running

in parallel producing there job files under the same path at the head node. In this case

THE GRID LAYER

LOCAL BATCH SYSTEM

SAM-GRID JOB MANAGERS

SAM BATCH ADAPTERS

BATCH SYSTEM IDEALIZERS

JIM
SANDBOXING

XML
BASED

MONITORING

 30

keeping track of the job files of a grid job becomes difficult as a typical job will have

hundreds of job files associated to it. Also if two grid job produce a file with same name

it will interfere the execution of the grid jobs violating their isolation. This also

complicates the collection of job files for a grid job which need to be transferred back to

the client machine and their cleanup.

JIM Sandboxing provides the mutual isolation between two grid jobs by

initializing a unique sandbox area for each grid job. A sandbox is a directory on a local

disk at the execution site which is the unique working area for a grid job. All the job

files produced by the local jobs belonging to a grid job are deposited in the sandbox

area for the grid job. The job managers can instruct the batch system to create the

standard output and error files for a local job in its sandbox area.

The sandbox area also serves as a staging area for the input files needed by the

batch jobs. JIM Sandboxing supports the concept of an input sandbox which is a

collection of user supplied input files needed for the execution of local jobs. In SAM-

grid context the input sandbox is a collection of non-SAM files such as a user specific

configuration files. The user supplies the input sandbox at the time of grid job

submission in the form of a compressed UNIX tar file. This file is transferred to the

head node through Condor-G and is unpacked in the sandbox area of the grid job. At the

time of local job submission the job managers add some other files into the sandbox

area such as SAM and other product configuration files, the grid credentials (grid

proxy) of the user etc.

 31

 Once the job manger has initialized the sandbox area for a grid job it then

packages it. During the packaging of a sandbox a control script is created which forms

the executable that is submitted to the batch system. When launched this control script

copies all the contents of the sandbox area from the head node to the worker node and

launches user application through a bootstrapping mechanism described in the next

chapter. This bootstrapping mechanism also enables the setup of a uniform SAM

environment at the worker nodes and to install products or APIs at the worker nodes on

the fly rather than requiring them to be present at the worker nodes. Again this is

discussed in detail in the next chapter.

JIM Sandbox has a Python API and a command line interface to enable the

creation of a sandbox, addition of files to a sandbox, packaging of a sandbox, and to

returning the job files in the sandbox in the form of a compressed UNIX tar file.

3.2.2.2 SAM-Grid Job Managers

The SAM-Grid job managers provide the service of grid job instantiation at the

execution site by means of mapping a logical grid job definition to a set of local jobs

submitted to the batch system [FABRIC-1]. The SAM-Grid job managers conform to

the standard Globus GRAM protocol and hence can be invoked through the gatekeeper

running at the head node of the execution site. As described earlier the standard grid

tools like Condor-G have a different job manager for each batch system. In SAM-Grid

architecture there is a single job manager for all the batch system. Instead of the job

manager the lower level components (particularly the batch adapters and the batch

 32

idealizers) in the Grid-to-Fabric interface provide the logic to abstract the underlying

batch system. Figure 3.4 shows the flow of control for job submission in the SAM-Grid

job managers.

In SAM-Grid each job is categorized into a job type depending on the

application being run by the job. Currently there are four job types: D0 Monte Carlo for

running Monte Carlo simulations for the DZERO experiment, D0 Merge to merge the

files produced by a job of type D0 Monte Carlo, D0 Reconstruction for running the

DZERO reconstruction application, and Mcfarm for running Monte Carlo simulations

using McFarm [MCFARM].

At the grid level, a job is defined logically as a set of parameters; for example a

DZERO Monte-Carlo job is defined as a Request Id, the code version to use for

production, the input SAM dataset name and the number of events to be simulated.

When a job is submitted to the execution site this set of input parameters is transferred

to the SAM-Grid job managers through the gatekeeper. Once invoked the job manager

triggers local job submission at the execution site. Firstly the job manager processes the

input parameters and determines the number of jobs that need to be submitted to the

local batch system. This in part depends on the processing capabilities of the site at

hand and is read form a local configuration file. Next the job manager initializes a

sandbox area for the grid job using the sandboxing interface described earlier. The

sandbox area forms the working area for the job manager and all the remaining

processing takes place from under this area.

 33

Figure 3.4 SAM-Grid Job Managers flow control

The local job submission results in a set of operations being performed at the

head node that depends on the job type of the grid job. In order to support different job

types the SAM-Grid job managers support the concept of application adapters which

are application specific components and perform the pre-submission operations for the

application. For example the DZERO Monte-Carlo application adapter downloads the

details about the request being processed from the Metadata repository using the SAM

data handling system. Some other application such as Reconstruction might require a

GRAM Job submission
request

Process input parameters
And other initialization

processing

Execute Application adapters

Is last job submitted OR
Error?

Invoke batch adapters and
read local id of job

submitted

Update XML Db

Return GRAM
Status

NO

YES

 34

SAM project being started at the head node. The application adapters are a very thin or

small part of the job managers and hence the application specific aspect is kept to a

minimum.

Next the job manager invokes the job submission process by using SAM batch

adapters and Batch System Idealizer. It is important to maintain a mapping between a

grid job and the local jobs so that the status of a grid job can be tracked. This mapping

is created by using the unique grid id assigned to the grid job and the batch idealizers.

This is discussed in detail in the next chapter. Essentially during job submission the job

managers provide the id of the grid job to the batch idealizers which are responsible for

creating the mapping. The batch idealizers in turn return to the job manager the id of the

local job submitted. In order to facilitate more precise monitoring, the job manager uses

the XML monitoring interface to create an entry in an XML database for each local job

submitted with the local id as the key. During this flow if any errors are encountered the

job manager returns the appropriate GRAM status back to the grid manager at the

submission site.

Once the job submission is complete, the job manager is then responsible for

returning the correct status of the grid job to the grid manager running at the submission

site. The grid manager periodically sends a GRAM poll request to the execution site to

determine the status of the grid job. This request is received by the job managers at the

execution site. A grid job is considered to be active as long as there at least one active

or queued local job belonging to the grid job in the batch system. In order to determine

the status of the grid job the job manager invokes the batch idealizers supplying them

 35

the grid id. The batch idealizers return to the job managers the list of corresponding

local jobs and their batch system status. The job manager then performs what is termed

status aggregation to determine the status of the grid job. Status aggregation is the

analysis of the batch idealizer output to determine the grid status. The job managers also

update the XML database with the current status of each local job. If it is determined

that the grid job has finished the job manager collects the output files and the log files

from the sandbox area and transfers them to the submission site using GRAM. It then

triggers the cleanup of sandbox area for the grid job and finally returns the appropriate

GRAM status back to the grid manager. The job manager also provides an interface to

terminate a grid job which when invoked (through GRAM) results in the local jobs at

the batch system level being terminated or killed.

3.3 SAM-Grid Complete Architecture

Figure 3.5 taken from [CHEP04] shows the complete SAM-Grid architecture

with the grid layer, the fabric layer and the SAM data handling system. The SAM data

handling system is divided in the grid and fabric layers as well as shown. The global

data handling services of SAM are mapped to the grid layer. While the local

components such as the SAM Station, the station cache etc. are mapped to the Fabric

layer.

The global services of SAM are accessed at various phases during the execution

of a job. The job manager uses it to perform some application specific operations on the

head node before local job submission is invoked. The global services are also accessed

 36

from the worker nodes (where the local jobs run) to perform staging of application

executables and the input that it needs.

Figure 3.5 SAM-Grid Architecture

The database that is used for storing the monitoring information is Xindice

[XINDICE] which is a native XML database. The database can be queried remotely

using XML-RPC [XMLRPC] and Tomcat servlet engine [TOMCAT] running at the

execution site. The monitoring information stored in the XML database is made

 37

available to the grid user using the global Web server. When a user requests the status

of a job it results in the Web server querying the XML database at the execution site

and returning the status to the user browser. The monitoring database is updated form

the worker nodes as well with information about the resource usage and the files

produced by a job.

The job manager uses the SAM Logging service to log the details about its

operations. These log files are persistently stored on the MSS and can be viewed

through the web enabling easy troubleshooting and debugging.

 38

CHAPTER 4

BATCH SYSTEM ABSTRACTION AND IDEALIZATION

As discussed in the previous chapter the SAM-Grid job managers depend on the

lower layers in the Grid-to-Fabric interface to provide an abstraction of the underlying

batch system and its configuration. The job managers need a uniform interface to -

• Submit jobs to any batch system specifying the executable, the input and the

directory path under which the output files produced by the local job should be

returned by the batch system

• Determine the current status of a grid job. This means given a grid id the job

managers need to know the list of local jobs and their status, that were created as

part of the submission of the grid job

• Kill either a single batch job or all the batch jobs belonging to a grid job

This uniform interface is provided to the job managers through the SAM Batch

Adapters and the Batch System Idealizers. The implementation of these two

components is discussed in detail in this chapter. In addition to this there is a need to

create a uniform running environment at the worker nodes where the actual processing

takes place, in which the applications can expect a set of services to be available to

them irrespective of pre-installed software at the site. This chapter also discusses how

 39

JIM Sandboxing mechanism is used to bootstrap the execution of High Energy Physics

applications.

4.1 SAM Batch Adapters

SAM Batch Adapters is a package developed at Fermilab as part of the SAM

project. It was originally intended to provide the correct interface to a SAM station for

submitting jobs to the underlying batch system [FABRIC-1]. The SAM-Grid

architecture has adopted this package as a configuration tool that provides the job

manager with interfaces to interact with the batch system. The interfaces themselves are

implemented in the Batch System Idealizers which are described in the next section.

The SAM Batch Adapter package has a lot of features but here we discuss the aspects of

the package that are relevant within the SAM-Grid architecture. For a more detailed

reading on the topic the reader can refer [BATCH-ADAPTERS]. The information in the

rest of this section has been derived form [BATCH-ADAPTERS].

The SAM Batch adapter package is implemented in Python and has a command

line interface available and also provides a Python API. The package is fully

configurable and does not make any assumptions about the underlying batch system.

Thus it can handle any batch system. The configuration of the package is stored in a

local python module which can be updated using an administrative interface the

package provides. Figure 4.1 shows part of a typical SAM Batch Adapter configuration.

Each command stored in the configuration has a command type associated with

it. For example the command shown in figure 4.1 has type “ job lookup command”. The

 40

Figure 4.1: Part of a typical SAM Batch Adapter Configuration

command types that are used in SAM-Grid are – job submit command, job kill

command, and job lookup command. The function of these command types can be

derived from their name. Each command has a command string associated with it which

may contain any number of predefined string templates. String templates are used for

plugging the user input into a command string, which then gives a command that the

user can execute to get the desired results. For example in figure 4.1 the command

string for the job lookup command is “qstat %__BATCH_JOB_ID__”. The user or the

client can read the command string giving its command type and then replace the

template string which in this case is “%__BATCH_JOB_ID__” with the id of a local

job and then execute the resulting command to perform lookup on a single batch job.

The use of string templates in SAM-Grid is discussed later in this section.

Each batch command can have multiple results or possible outcomes associated

with it. The result is characterized by the exit status of the command and may have an

output string associated with it which may contain a string template. The exit status in

question here is the status which is returned by the operating system when the command

is executed after template substitution. In figure 4.1 there are three results associated

batchCommandResult_1 = BatchCommand.BatchCommandResult(0, "", "Success")
batchCommandResult_2 = BatchCommand.BatchCommandResult(0, "%__BATCH_JOB_ID__", "")
batchCommandResult_2 = BatchCommand.BatchCommandResult(1, "", "Failure")
batchCommand_1 = BatchCommand.BatchCommand("job lookup command",
 "qstat %__BATCH_JOB_ID__” , "[batchCommandResult_1,

batchCommandResult_2, batchCommandResult_3,]")

 41

with the job lookup command. The first result says that an exit status 0 corresponds to

success. The second result extends this by saying that the output produced by the

command upon its successful execution is the batch job id. The third result states that an

exit status of 1 means that the command has failed.

It is important to note that the SAM Batch Adapter itself does not execute the

commands to perform Batch System operations. It just provides a functionality to

prepare commands for execution. It is the responsibility of the API user to execute

commands and interpret their results. The commands shown in the examples in this

section have embedded batch system commands in them. However in SAM-Grid the

batch system functionalities are provided within Batch System Idealizers for reasons

explained in the next section. Thus in SAM-Grid the command strings in SAM Batch

Adapter configuration contain the idealizer scripts rather than batch system commands.

For example the command string for a look up command looks something like

“sam_pbs_handler.sh job_lookup --project=%__USER_PROJECT__ --local-job-

id=%__BATCH_JOB_ID__”. The idealizer script in this case is sam_pbs_handler.sh

which provides the interface to PBS batch system.

As mentioned earlier there are a lot of string templates defined in SAM Batch

Adapter, but only a few are used in SAM-Grid. The rest of this section lists the template

strings used in SAM-Grid and their meaning in SAM-Grid context.

 42

• %__USER_PROJECT__: It was originally intended to provide a name to a

SAM Project, but in SAM-Grid it is used to specify the grid id of a job to the

idealizer scripts.

• %__USER_SCRIPT__: It is used to specify the name of the executable to be

submitted to the local batch system.

• %__USER_SCRIPT_ARGS__: It is used to specify the arguments if any, to the

executable submitted to the local batch system

• %__USER_JOB_OUTPUT__: The path where the standard output file of the

batch job should be deposited.

• %__USER_JOB_ERROR__: The path where the standard error file of the batch

job should be deposited.

• %__BATCH_JOB_ID__: To specify the id of a single batch job.

• %__BATCH_JOB_STATUS__: The current status of a batch job.

4.2 Batch System Idealizers

Batch System Idealizers together with SAM Batch Adapters provide a complete

abstraction of the underlying batch system to the job managers. Batch System Idealizers

implement the interfaces required to perform batch system operations such as

submitting jobs, checking the status of a job etc. SAM Batch Adapter is just an interface

to invoke the idealizer scripts. Batch System Idealizers as the name implies, idealize the

batch systems to make their interactions with the grid machinery easier by mitigating

any imperfections and adding any missing features [FABRIC-1]. The idealizer scripts

 43

are totally batch system specific and a new batch system can be added to the grid

infrastructure by simply writing an idealizer script for the batch system.

4.2.1 Need for Batch System Idealizers

This section discusses the rationale behind the Batch System Idealizers. We can

use the interfaces provided by the batch system itself along with SAM Batch Adapters

to provide an abstraction of the batch system. However there are a lot of problems that

are exposed when the batch system interfaces are used in a grid scenario.

One problem that almost all the batch systems suffer with is the transient

failures in executing some commands. While these transient failures may be acceptable

to an interactive user, in a grid scenario they will cause the grid job to fail. For example

if the execution of a batch system polling command fails due to a network glitch or the

command times out because of heavy load on the server, the job managers will fail to

report the correct status back to the grid job manager at the submission site, which will

falsely interpret the job as a failure and proceed with clean up operations. Since almost

all the batch system commands trigger some sort of network communication with a

server they are particularly vulnerable to such transient failures. This problem is

exacerbated when there are a number (in the order of thousands) of jobs running in the

batch system which is a common occurrence in a grid scenario. Such transient failures

can be avoided by simply retrying over a period of few minutes.

The output produced by a batch system command needs to be parsed by the job

managers so they can interpret the results. However the output produced by commands

 44

in different batch systems differs from each other. In some cases the output maybe too

verbose, making it really complex to parse it. Also the status of a batch job is

represented in different ways in different batch systems. For example some batch

system represent the status of a running job simply as running while some batch

systems may call it active. Thus there is a need to map the batch system specific status

of a job to a set of standard status that the job managers understand.

There is a need to create a mapping between a grid job and the local jobs that

were submitted as part of the grid submission. This mapping is created in a totally batch

system specific way. For example in some batch systems this can be done by setting the

name of the local job to the id of the grid job. In general the way this mapping is created

varies from one batch system to another. There is a need to abstract the creation of this

mapping from the job managers.

In a cluster every worker node has a certain amount of scratch space reserved

for a local job that serves as its working area. It is important that each local job runs in

its own separate scratch directory at the worker nodes. This ensures mutual isolation

between jobs that get scheduled to the same node simultaneously. Not all the batch

systems provide support for scratch management at the worker nodes where the actual

computation takes place. For example some batch systems like Condor provide a full

fledged scratch management support while some other batch systems like PBS do not

have any support for scratch management. There is a need to transparently provide

scratch management support for batch systems that do not provide this service.

 45

Another problem that is prevalent in cluster computing is what we term as the

Black Hole Effect. In a cluster if even a single node has a configuration problem or

hardware problems which results in jobs failing quickly (much faster than the execution

time of the job), it reduces the turn around time at that node. This results in the batch

system scheduling more and more jobs to the same node not knowing that they will fail

as well. This results in the faulty node acting like a black hole and eating up a lot of jobs

from the batch system queue. This problem is particularly severe when a job runs for

many hours and there are hundreds of such job queued up in the batch system. Consider

for example a local job runs for 10 hours. There are 100 such jobs submitted to a cluster

off which 10 are scheduled and started immediately. One of the nodes in the cluster fails

the job in less than a minute and becomes free again. In the view of the scheduler this

node is up for selection again. Depending on the size of the cluster and the user priority

there, if a job is scheduled again to the same node the same cycle is repeated. If the jobs

are continuously dispatched to the same node it will result in only 9 out of the 100 jobs

finishing successfully. A success rate of just 9% is unacceptable. Common examples of

faults that result in the Black Hole Effect are – a faulty network interface at the node

resulting in files getting corrupted, DNS miss-configurations etc. An interactive user

can spot such a problem immediately and simply resubmit jobs to the batch system

asking it to avoid the faulty node. However in the case of a grid user this is not possible

because the batch system is transparent to the grid user.

The problems that are identified above are solved by implementing the batch

system interfaces in the batch idealizers as discussed in the next section. The batch

 46

idealizers abstract the client (job manager) from these problems giving them a picture of

a grid friendly batch system.

4.2.2 Implementation of BS Idealizers

Most of the batch adapters in SAM-Grid are written in UNIX shell scripts and a

few are written in Python. The batch systems that are currently supported by SAM-Grid

i.e. the batch systems for which an idealizer exists are – The batch at CC-IN2P3 (BQS)

[BQS], the Portable Batch System [PBS], the Condor Batch System [CONDOR-URL]

and Farms Batch System Next Generation [FBSNG].

In order to overcome the problems with transient failure in batch system

commands retrials are incorporated with every batch system command in the batch

idealizers. The time interval for these retrials is configurable, but for them to be

effective must span be in the order of minutes. This is because the mild failures these

retrials are supposed to mitigate should disappear in a few minutes. If the problem is

severe and lasts more than the retrial interval then its best to fail and return appropriate

error condition.

The Idealizers also create a mapping between the grid job and the local jobs in

the batch system. To create this mapping the idealizers accept a unique id associated

with the grid job and associate it with the local job in a batch system specific way. The

way it is done for different batch system is discussed later.

To provide a uniform interface of the batch system to the job managers the

output of various commands must be uniform irrespective of the batch system. For this

 47

reason the batch idealizers convert the output of the batch system command to a

uniform format. They also perform a mapping of the batch system status to a set of

status that the job managers understand. The statuses that are currently supported are:

active, failed, suspended, pending, and submitted. As an example if a batch system

reports the status of a job as queued the batch idealizers will report its status as pending.

The batch idealizers also provide scratch management support for batch systems

that do not already do so. This feature is provided by writing special scratch

management scripts that only the batch idealizers know about thus abstracting this

limitation from the job managers. The scratch management scripts are staged to the

worker nodes using the batch system and form the 1st stage of execution. The path of

the scratch area at worker nodes is read from configuration at the head node. The

scratch management scripts create a separate work area or directory for the local job

under this path. They then launch the user executable from this unique scratch area.

After the job finishes they clean up the directory associated with job and return the

appropriate exit status to the batch system.

The batch system idealizers provide a partial solution to the Black Hole

Problem. While solving this problem in an automated way is non-trivial, the batch

idealizers soften its blow by maintaining a neglect list, which contain the names of the

nodes known to have such problems. While job submission they explicitly ask the batch

system not to schedule jobs to nodes in the neglect list. At this point this list is being

maintained manually and whenever a problem like above is identified the site

administrator will need to update this list. This solution is incomplete because it still

 48

requires some human intervention. However once the computation of the neglect list is

automated, the grid user can resubmit jobs knowing that it won’ t suffer the same

problem again.

4.2.2.1 Batch System Idealizer Interface

Figure 4.2 shows the interface of the batch idealizers in SAM-Grid. The batch

idealizers need not have the same interface because they are invoked through SAM

Batch Adapters. However a uniform interface makes configuration of SAM Batch

Adapter lot easier and hence it is desired.

Figure 4.2: Batch Idealizer Interface

ACTIONS SUPPORTED BY ALL IDEALIZERS

For submitting a job : job_submit
For polling a job : job_lookup
For killing a job : job_kill

ARGUMENTS ACCEPTED BY ALL IDEALIZERS

--executable=%__USER_SCRIPT__
--project=%__USER_PROJECT__
--arguments=%__USER_SCRIPT_ARGS__
--stdout=%__USER_JOB_OUTPUT__
--stderr=%__USER_SCRIPT_ERROR__
--local-job-id=%__BATCH_JOB_ID__

COMMAND FORMATION
idealizer_script <action> <arguments>

 49

As shown in figure 4.2, all the batch idealizers accept three actions.

1. job_submit: To submit a job to the batch system.

2. job_lookup: To check the status of job(s).

3. job_kill: To kill batch job(s).

The arguments are supplied to the idealizers using the concept of template substitution

described in section 4.1. The meaning of each argument can be derived from the

template string description given in section 4.1.

Figure 4.3: SAM Batch Adapter Configuration

 50

Figure 4.3 shows how batch idealizers are used in conjunction with the SAM

batch adapters. When the SAM batch adapters are configured at a particular site the

command strings include the path to the batch idealizer script for the batch system at the

site. Figure 4.3 shows such a configuration for the Condor batch system. The job

managers need to read the command using SAM batch adapters and the substitute the

arguments in place of template strings and execute the batch idealizer scripts.

Figure 4.4 shows the job submission to a Condor batch system. The job

managers will search for the expected output string (see figure 4.3) in the output of the

batch idealizer and determine the local job id of the batch job.

Figure 4.4: Job submission through batch idealizer

Figure 4.5 shows the lookup of a job through the batch idealizers. In this case

there is just a single batch job belonging to a grid job with grid-id “TEST”. The output

produced contains the mapped status of the job. Again the job managers can interpret

this output using the SAM Batch adapter configuration.

 51

Figure 4.5: Job lookup through batch idealizer

Figure 4.6 shows the job lookup when a grid job spawns multiple local jobs.

When updating the status of individual batch jobs, the job manager look for its id in the

output produced by the idealizers. If the id is missing from the list, the job has finished

and the status is updated.

Figure 4.6: Job lookup for multiple local jobs belonging to a single grid job

Figure 4.7 shows the output of lookup when all the batch jobs belonging to a

grid job have finished. At this point the job managers can aggregate the grid job status

as done. If during lookup job managers find even a single batch job belonging to a grid

 52

job the aggregated status of that grid job will either be active or failed depending on the

status of the batch job.

Figure 4.7: Output of lookup when the job has finished

The rest of this section discusses the batch system specific aspects in the

implementation of different batch system idealizers.

4.2.2.2 Batch System Idealizer for Condor

The batch system idealizer for Condor is implemented as a UNIX shell script

called sam_condor_handler.sh. Job submission to Condor requires the creation of a job

description file (JDF). sam_condor_handler.sh script creates this JDF at the time of job

submission before invoking the batch system. The mapping of the grid-id and local jobs

is created by setting a variable called sam_project in the JDF to the grid id. When

performing lookup, the batch system is asked for only those jobs that were submitted

with sam_project variable set to the id of the grid job.

A feature that the condor batch idealizer supports and is not supported by any

other batch idealizer is the pre-emption requirement of the job. Since Condor supports

 53

process migration, a job can be evicted from a node it occupies if a higher priority job is

submitted. This pre-emption is not acceptable for some type of jobs like the SAM-Grid

merging jobs. Such jobs can be submitted to the batch system requiring that once started

they should not be pre-empted.

4.2.2.3 Batch System Idealizer for PBS

The batch idealizer for PBS is implemented as a UNIX shell script called

sam_pbs_handler.sh. Here the mapping between grid and local jobs is created by

submitting the local jobs with their name attribute set to the id of the grid job. While

performing lookup on a grid id, only jobs having name as the grid id are returned. The

value assigned to the name attribute is not exactly the grid id but a unique string

extracted from it. This is done because the grid id may violate the length restriction

imposed on attribute name by the batch system.

One fallacy of the PBS batch system is the absence of any scratch management.

This is overcome by the pbs_scratch_setup.sh script. This scripts and the user

executable are transported to the worker through the batch system. Upon its execution

the scratch management script creates a unique directory (based on local job id) for the

job and then launches the user executable. When the user executable finishes, the

scratch management script then cleans up the job area in the scratch disk. A problem

with this scheme is that if the job is deleted from the batch system, its scratch area is left

dangling. This problem is eliminated by having the scratch management script examine

the scratch area and cleaning up any directories belonging to jobs killed. Thus if the

 54

scratch directory for a job is left dangling it will be cleaned when the next job is

scheduled at that node.

4.2.2.4 Batch System Idealizer for BQS

BQS is a batch system developed at the IN2P3 computing center in Lyon,

France [IN2P3]. It is very similar to the PBS batch system. The batch idealizer for BQS

performs mapping between the grid id and local jobs in a manner similar to that in PBS

idealizer described in the previous sub-section. BQS has the property that when a

number of jobs are submitted they are buffered locally and then jobs are dispatched to

the batch system server in bulk. This poses a problem in the grid environment. If the

grid job submission finishes and the local jobs (submitted as part of grid submission)

are still buffered locally by the time first polling request for the grid job arrives, then the

job managers will assume the grid job to be done because the batch jobs have not yet

been actually submitted to the batch system server. This problem is overcome in the

BQS idealizer. When a job is submitted the idealizer determines if it is the first local job

belonging to the grid job. If it is, the idealizer blocks and waits for this job to shows up

on the batch system polling command. Once this happens the idealizer then returns the

id of the local job and further job submissions proceed normally. If the first batch job

does not show up in the batch system queue for a certain amount of time (this time is

configurable), then the idealizer returns with an error.

 55

4.2.2.5 Batch System Idealizer for FBSNG

FBSNG is a batch system developed by the Integrated Systems Development

Department at Fermilab [ISD]. It is based on Farm Batch System. The idealizer for

FBSNG has been implemented as a python script called sam_fbsng_handler.py. It

makes use of FBSNG python API for interacting with the batch system. The mapping

for grid id to local jobs is provided by setting the section name of the local jobs to the

grid id. For more details on FBSNG the reader can refer [FBSNG]. There is a FBSNG

scratch management script called fbs_scratch_setup.sh and is similar to one for PBS.

The only difference in scratch management here is that the batch system takes care of

the cleanup of scratch areas and hence the problem of dangling scratch area is not

encountered in case of FBSNG.

4.3 Bootstrapping the Execution of User applications

The SAM-Grid system depends on SAM for its data handling needs. As

described earlier the application executables and its input data are staged at the worker

nodes via SAM. In order to perform this stage-in at the worker nodes the flow of control

passes through multiple stages with each stage performing a set of operations that

enable the stage-in in the last bootstrapping stage after which the user application is

launched.

Figure 4.8 shows the bootstrapping process at a worker node. The execution at

the worker node begins with a self extracting compressed file which is created as part of

packaging a sandbox at the head node. It contains within it a GridFTP client, the user’s

 56

grid credentials i.e. the X509 proxy of the grid user and a control script called sandbox

manager. When executed the self extractor untars its contents and passes the control to

sandbox manager. The sandbox manager sets up the grid client and then uses GridFTP

to copy a set of files from the job’s sandbox area at the head node. These files include a

compressed tar file that contains SAM APIs & their dependencies, the XML database

client API, and configuration files. They also include scripts that form the next stages of

bootstrapping. The sandbox manager then sets up these products. The configuration

files for different products are created in the sandbox area at the head node at the time

of job submission and are derived from the configuration at the head node itself. Hence

to enable the bootstrapping of dependencies, the administrator just needs to configure

the head node properly. The file transfer mechanism used to transfer these files between

the head and the worker nodes is GridFTP. It is very robust and scales well even for

hundreds of parallel transfers.

After sandbox manager finishes execution, an environment has been setup in

which the lower layers of bootstrapping and the user applications can talk to SAM or

use the monitoring database. Thus there is no need of any software to be pre-installed at

the worker nodes. Instead all the dependencies are setup dynamically using this

bootstrapping procedure. This makes the deployment and administration of the

infrastructure very easy.

Next the sandbox manager invokes the next bootstrapping stage which updates

the monitoring information for each local job. This stage is implemented as a UNIX

shell script called jim_rapper.sh. It updates the XML monitoring database with the

 57

hostname where the execution is taking place. When the execution of user application

Figure 4.8: Bootstrapping at a worker node

finishes it updates the database with the usage information (see Figure 4.9). This

information is vital to keep track of resource consumption by various Virtual

Organizations. Also it stores the information about the job outcome i.e. the exit code of

user application.

JIM Sandbox Self Extractor

Sandbox Manager (sandbox_mgr)

Monitoring (jim_rapper.sh)

Application Specific Bootstrapping (e.g. mc_sam_rapper.sh)

Grid Application

 58

Figure 4.9: Usage information in XML database

Another feature that is provided by the monitoring stage is protection against a

run-away job. A run-away job is a failed job that is not producing any output and is

stuck in some sort of endless loop. This feature is implemented in the script called

accelerator.sh. This is done by keeping track of the output directory of the job and

periodically checking if the files under it are getting updated or not. If the files have not

been updated for a long time then it means that the job is stuck and is not doing any

useful processing. In this case the user application is terminated thus freeing up the

node for further processing.

The final stage in the bootstrapping process is application specific. An example

of this stage is mc_sam_rapper.sh script which is responsible for bootstrapping the

DZERO Monte-Carlo application. Here the application input and the application itself

are staged from SAM by making use of SAM APIs available at this stage. It also

updates the XML database with information about the time taken to perform various

staging operations.

 59

4.4 Intra-Cluster transfers in SAM

SAM is a data handling system that provides the connectivity between various

SAM stations and MSS. When a user requests a file using SAM, the station gets the file

from either another station’s cache or the MSS to its own cache. It is then the

responsibility of the user to copy the file in its working area. The most common way

that SAM has been used so far has been by having the station’s cache visible across the

entire cluster through a shared file system. The user’s scripts/programs then access

these files through the shared file system. However in a Grid environment this mode of

operation is not acceptable because not all sites will have a cluster-wide shared file

system and also copying files over a shared file system doesn’ t scales well especially

when there are hundreds of transfers in parallel.

In order to allow the files to be copied from the SAM station’s cache to the

worker nodes, SAM-Grid makes use of the sam_cp package developed at Fermilab

[SAMCP]. The sam_cp product is a wrapper around various file transfer protocols and

has traditionally been used by the SAM stations to transfer files between them. The

details about of design of sam_cp can be found in [SAMCP-DESIGN]. sam_cp allows

the transfer of files by a command like sam_cp srcFile destFile. The actual transfer

protocol that will be used for the file transfer is configurable. In SAM-Grid the file

transfer protocol used for this is GridFTP.

If a site has the capacity to process hundreds of jobs in parallel then there is a

risk of the intra cluster file transfers choking the network interface at the machine

hosting SAM station’s cache. This problem is exacerbated when the size of file being

 60

transferred is huge (hundreds of megabytes) which is often the case in case with SAM

files. In case the SAM station and the head node are being hosted on the same machine

this problem can result in wide spread failures. This is because if the network-interface

at the head node is choked then there is a risk of the submission site not being able to

communicate with the job managers and thus the grid job can fail. In addition to this the

communication with the batch system server might fail as well.

Thus there is a need to limit the number of concurrent file transfers from the

SAM cache. In SAM-Grid this is done using Farm Remote Copy utility (FCP) [FCP].

FCP is a product of the ISD group at Fermilab. It restricts the number of parallel file

transfer operations from the SAM cache. The maximum number of transfers allowed is

configurable. FCP has client-server architecture. Before performing the copy operation

the client contacts the FCP server and requests the file transfer. If this request will result

in the number of file transfers exceeding the set limit, the server makes the block until

one of the transfer finishes. At that point the client is given the permission to proceed

with the file transfer. If there is more than one client waiting for permission then the

server signals them on a First come First Serve basis. For more details about the design

and functioning of FCP the reader can refer [FCP].

In SAM-Grid the FCP server runs on the machine hosting the SAM cache. The

FCP and sam_cp clients are setup dynamically at the worker nodes using the

bootstrapping mechanism described in section 4.3. In order to make use of FCP in

SAM-Grid, we have integrated it with sam_cp and GridFTP. When sam_cp is invoked

 61

at the worker nodes it results in FCP client contacting the server. Once the client gets

the permission to copy file, FCP invokes GridFTP to perform the actual file transfer.

The maximum number of concurrent transfers that are allowed depends on the

site at hand. In particular it depends on maximum number of jobs that can run in

parallel at the site and the capacity of the network at the site.

 62

CHAPTER 5

CONCLUSIONS

The SAM data handling system has been in production use since 1999. The

SAM-Grid system has augmented the data handling capability of SAM by adding job

and information management. This chapter lists the important conclusions that can be

drawn from this work. It also provides some statistics about the current usage of this

system and then discusses scope for future enhancements to the current infrastructure.

5.1 Conclusions

The work in this thesis identified some key problems that make the integration

of batch systems with a grid difficult. Current research in grid community is not

addressing the issues put forward in this thesis. By providing a layer of abstraction

above the batch systems we have developed a framework in which batch systems can be

easily integrated with a grid middleware such as Condor-G.

The SAM-Grid system has enabled the High Energy Physics applications such

as Monte Carlo simulations to be run over a grid. The SAM-Grid system provides a

distributed resource management for physics collaborations such as DZERO which has

resulted in more efficient resource utilization. In addition to this development of

sophisticated job managers has resulted in an infrastructure in which new applications

 63

can be easily integrated into the grid. An example of this is the integration of McFarm

[MCFARM] with SAM-Grid.

5.2 Current utilization of SAM-Grid system

The SAM-Grid system has been deployed for production starting from January

2004. It has since been used to do Monte Carlo event simulation for the DZERO

experiment. Through September 2004 the system had produced over 2 million events

which is equivalent to about 17 years of computation on a typical GHz CPU [CHEP04].

By adding various idealization features and other enhancements the inefficiency in

event production due to the grid infrastructure has been reduced from 40% during early

phases in deployment to about 1% [CHEP04]. Figure 5.1 from [PPDG-DOC] lists the

efficiency of the infrastructure as observed during a one week stress test period during

which the system was tested for robustness by submitting jobs to three test sites. The

results were then presented in [PPDG-DOC].

Figure 5.1: Infrastructure efficiency during 1 week test period

 64

The end-to-end efficiency of running the application is less than JIM efficiency

because they include the failures of the applications themselves. As can be seen failures

due to the grid infrastructure are less than 1 % making this a very reliable and robust

system. Figure 5.2 lists some additional numbers collected by the SAM-Grid team to

study the end-to-end efficiency of running DZERO montecarlo at three sites over a 6

week period starting from February 02, 2004.

Week Average
Efficiency

Lyon,
France

Manchester,
U.K.

Wisconsin,
U.S.

1 67 56.4 86 58.4
2 65 55.9 77 62.1
3 90 95.3 84.5 91.2
4 87 93.9 85 81.4
5 94 98.05 93.2 91.36
6 95 98.5 94.6 92

Figure 5.2: End-to-end efficiency at 3 sites over a 6 week period

The SAM-Grid system is currently being tested for running Monte Carlo

application for the CDF experiment and for running Reconstruction application for both

the DZERO and CDF experiment.

5.3 Future Work

In the current infrastructure the administrator needs to manually maintain the

list of bad nodes where the application consistently crashes. There is a need to automate

 65

the computation of this list in order to avoid the Black Hole effect. Once this is done

there will be no need of human intervention for normal operations.

Also the layering in the bootstrapping process can be further enhanced by

having a separate layer to perform SAM stage-in operations. Currently this is done as

part of the application specific layer.

In the grid layer full-fledged brokering which makes use of information about

site usage and capabilities needs to be enabled. Currently the brokering is mainly

manual with the user explicitly specifying the destination of a job.

 66

REFERENCES

[FOSTERPHYSICSTODAY] Foster, I., The Grid: A new infrastructure for 21st

Century Science. Physics Today, Feb 2004

[ANATOMY] Foster, I., C. Kesselman, and S.Tuecke, The Anatomy of the Grid.

International J. Supercomputer Applications, 15(3), 2001.

[FNAL] Fermi National Accelerator Laboratory, http://www.fnal.gov

[CDF-1] The Collider Detector at Fermilab, http://www-cdf.fnal.gov

[D0-1] DZERO, http://www-d0.fnal.gov/

[ENSTORE] Fermilab Mass Storage System, http://www-isd.fnal.gov/enstore

[SAM-1] Carpenter, L., et al., SAM Overview and Operation at the D0 Experiment in

the proceedings of Computing in High Energy and Nuclear Physics, Beijing, China,

September 2001

[PPDG] Particle Physics Data Grid Home page, http://www.ppdg.net/

[GLOBUS-PAGE] The Globus Alliance home page, http://www.globus.org

 67

[GLOBUS-TOOLKIT] Globus Toolkit, http://www-unix.globus.org/toolkit

[GSI-1] Welch, V., et al. X.509 Proxy Certificates for Dynamic Delegation in 3rd annual

PKI R&D Workshop, 2004

[GRAM-URL] Globus Resource Allocation Manager Overview, http://www-

unix.globus.org/developer/resource-management.html

[GASS] Global Access to Secondary Storage, http://www.globus.org/gass/

[GRIDFTP-URL] Globus GridFTP, http://www.globus.org/datagrid/gridftp.html

[GRIDFTP-DOC] GridFTP Update January 2002, http://www.globus.org/datagrid/

deliverables/GridFTP-Overview-200201.pdf

[CONDORG-URL] Condor-G, http://www.cs.wisc.edu/condor/condorg/

[CLASSADS] Condor ClassAd, http://www.cs.wisc.edu/condor/classad

[CONDORG] Frey, J., et al., Condor-G: A Computation Management Agent for Multi-

Institutional Grids in the proceedings of Tenth IEEE Symposium on High Performance

Distributed Computing, San Francisco, California, August 2001

 68

[SAM-2] Carpenter, L., et al., SAM and the Particle Physics Data Grid in the

proceedings of Computing in High Energy and Nuclear Physics, Beijing, China,

September 2001

[CHEP04] Garzoglio, G., et al., Experience producing simulated events for the DZero

experiment on the SAM-Grid in the proceedings of Computing in High Energy and

Nuclear Physics, Interlaken, Switzerland, September 2004

[CONDOR-MMS] Condor Match Making Service, http://www.cs.wisc.edu/condor

/manual/v6.0/2_3Condor_Matchmaking.html

[FABRIC-1] Grid to Fabric job submission interface in SAM-Grid, http://www.d0.fnal.

gov/computing/grid/SAMGridFabricJobSubmission.html

[FABRIC-2] Garzoglio, G., et al., The SAM-Grid Fabric Services in IX International

Workshop on Advanced Computing and Analysis Techniques in Physics Research

(ACAT), Tsukuba, Japan 2003

[XINDICE] Xindice, http://xml.apache.org/xindice/

[XMLRPC] XML-RPC, http://www.xmlrpc.com/

[BATCH-ADAPTERS] SAM Batch Adapters, http://d0db.fnal.gov/sam_batch_adapter/

sam_batch_adapter.html

 69

[BQS] The Batch at IN2P3, http://webcc.in2p3.fr/man/bqs/intro

[PBS] Portable Batch System, http://www.openpbs.org/

[CONDOR-URL] Condor Overview, http://www.cs.wisc.edu/condor/description.html

[FBSNG] Farm Batch System Next Generation, http://www-isd.fnal.gov/fbsng/

[IN2P3] IN2P3 Computing Center, http://institut.in2p3.fr/

[ISD] Integrated Systems development Department at Fermilab, http://www-

isd.fnal.gov/

[SAMCP] sam_cp, http://d0db.fnal.gov/sam_cp/

[SAMCP-DESIGN] sam_cp Design, http://d0db.fnal.gov/sam/doc/design/

sam_cp_initial_design.html

[FCP] Farm Remote Copy utility, http://www-isd.fnal.gov/fcp/pres/FCPPres_frame.htm

[MCFARM]: Monte Carlo Farm at UTA http://www-hep.uta.edu/~mcfarm/mcfarm/

main.html

[PPDG-DOC] D0 Remote Processing, PPDG Documents April 2003

 70

BIOGRAPHICAL INFORMATION

Sankalp Jain attended the University of Mumbai, Mumbai, India where he

received his Bachelors degree in Computer Engineering in July 2001. After working in

Mumbai for a brief amount of time, he started his graduate studies at The University of

Texas at Arlington, USA in Fall 2002. He received his M.S. in Computer Science and

Engineering in 2004.

